Urban water security: Emerging discussion and remaining challenges

Ali Nazemia,⁎, Kaveh Madanib,c

a Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec, Canada
b Centre for Environmental Policy, Imperial College London, London, UK
c Department of Physical Geography, Stockholm University, Stockholm, Sweden

\textbf{ARTICLE INFO}

\textbf{Keywords:}
- Water security
- Urban hydrology
- Integrated water resources management
- Coupled human-water systems

\textbf{ABSTRACT}

Human livelihood requires reliable water supply and protection from water-related hazards. Significant growth in population and anthropogenic activities along with unfolding effects of global environmental change have increased the vulnerability of human systems to changes in water quantity and/or quality. Addressing such vulnerabilities has high management priority in urban regions due to the concentration of population and socio-economic activities. This has resulted into emerging various discussions around the concept of “urban water security”. Here we provide a brief overview on the water-related threats to human society and the context of water security, with a greater goal of recognizing operational and social challenges along with science needs in urban environments.

\section{1. Water-related threats to human society}

Water is among the most prominent elements for human life. Historically, human settlements have developed around areas that enough water has been available to support socio-economic activities. The immense population growth and the irresistible thirst for socio-economic development during the current \textit{Anthropocene} (Crutzen, 2006; Steffen, Crutzen, \& McNeill, 2007), however, have created a largely unsustainable global water use. Numbers speak it all: Only during the past century, world’s population has increased by around 4-fold, while human water consumption has increased around 5, 18 and 10 times for agricultural, industrial and municipal, respectively (Shiklomanov, 1993, 1997, 2006). This has put water resources under ever-increasing pressure globally. In addition, the unsustainable use of water along with increasing human-induced contaminants in ground and surface water resources have made a wide range of consequences from major decline in water availability and water quality to massive environmental changes – the catastrophic situation of Aral Sea and Lake Urmia (see AgbaKouchak \textit{et al.}, 2014; Precoda, 1991) are only two out of many existing examples worldwide.

At the present state, limited water resources has already marked a major global problem: UNESCO (2012) estimates that around 2 billion people currently live in water-stressed areas and over 800 million people have inadequate access to safe drinking water. Such unfolding issues have exacerbated sociopolitical tensions over decreasing water availability, which made the water management and controlling the competition over water allocation extremely complex and sensitive (Madani \& Lund, 2011). In addition, water-related hazards account for around 90% of all natural hazards globally, marking floods and droughts as the two most destructive natural threats to human societies. Only throughout 2010 water-related disasters killed nearly 300,000 people, affected around 208 million others and cost nearly $110 billion (UNESCO, 2012). Water-related hazards are continuously present at the local and global news: While California is currently recovering from a major 5-year drought (see Leahy, 17 April 2017), at the time of writing early drafts of this paper (May 2017), southern Quebec was in the State of Emergency due to major flooding in the area, including parts of Montreal (see Turnbull, 13 May 2017). The cost of such flooding events are often high (Wake, 2013): The Alberta’s Flood of 2013 has caused more than $5 billion damage to the economy (see Wood, 24 September 2013), marking this few-day incident the second costliest disaster in the Canadian history.

Heightened climate variability and change has started, and will continue, to majorly intensify such water-related threats (Schiermeier, 2014). The most recent model intercomparison study reveals that a 2 °C of global warming will approximately engage 15% of the global population with a severe decrease in water resources and will increase the number of people living under absolute water scarcity by another 40% compared to the effect of population growth alone (Schewe \textit{et al.}, 2014). In addition, various studies show that warming weather can trigger more water use and aggressive extraction from water resources (Elliott \textit{et al.}, 2014; Haddeland \textit{et al.}, 2014; Wheater, 2015a, 2015b; Wheater, 2015a, 2015b; Rosenzweig \textit{et al.}, 2014), which together with changes in operation patterns (Connell-Buck, Medellín-Azuara, Lund,
also be largely degraded by the climate change (Delpla, Jung, Baures, 2009), extensive dam building (Madani, 2014), aggressive groundwater extraction (Madani, Aghakouchak, & Mirchi, 2016; Shah, 2009), and irrigation expansion (Hassanzadeh et al., 2017; Zekri, Madani, 2012; Hassanzadeh, Kooy, Kemermink, & Brandimarte, 2013; Di Baldassarre, Brandimarte, & Beven, 2016; Snirivasan, Lambin, Gorelick, Thompson, & Rozelle, 2012). The evolving and self-organizing nature of interaction within these systems (Madani, 2013) in addition to the new non-stationarity conditions posed by climate and other sources of global change (Milly et al., 2008, 2015) imply that solutions to stationary problems may not be suitable under new circumstances. These new concepts have broaden the recognition of enormous challenges in addressing water security threats, particularly under extremely complex and uncertain futures. Recent definitions of water security summarize these new concepts and emphasize on existence of multiple dimensions within the water security discourse and the cross-scale dynamics within and between the coupled human-water systems (see Wheeler & Gober, 2013, 2015).

2. The context of water security

Growing water-related threats to human society has resulted in various debates in both science and governance spheres around possible means for achieving “an acceptable quantity and quality of water for health, livelihoods, ecosystems and production, coupled with an acceptable level of water-related risks to people, environments, and economies” (Grey & Sadow, 2007). Since mid-1990s, these discussions have started to be framed under the new context of “water security” (Appelgren & Kohn, 1997; Falkenmark & Lundqvist, 1998; Starr, 1992). Although earlier attempts had mainly noted water quantity concerns, the scope of water security discourse soon expanded to other domains and merged with another newly, yet independently developed context of Integrated Water Resource Management (IWRM; see, Cook & Bakker, 2012 for a comprehensive review). Through this evolution, IWRM has started to engage science and engineering with management, policy and governance through an inclusive discussion around the means of achieving water security. Nonetheless, as the scope of IWRM discussions have mainly been, and are, defined around specific case studies, the definition of water security have been inevitability case-dependent and become to a large extent geographically influenced. For instance, while in an arid place like Australia, the water security focus has been mainly on water availability (e.g., Government of Australia, 2010), for the UK this has been on flood defence (e.g., Government of UK, 2016), in parts of China on water pollution (e.g., Xia, Zhang, Liu, & Yu, 2007) and in the Middle East and North African regions on allocating limited water resources within a geopolitically tense environment (e.g., Al-Otaibi & Abdel-Jawad, 2007; Amery, 1997; Madani, 2014; Zeitoun, Allan, & Mohiuldeen, 2010). Nonetheless, due to the integrative nature of water security, the cross-dependencies between previously assumed disconnected domains were started to be appreciated (Mirchi, Watkins, Madani, 2010). In addition, negative long-term impacts of various human interventions such as water transfer (Gohari et al., 2013; Lund et al., 2007; Madani & Lund, 2012; Madani & Mariño, 2009), extensive dam building (Madani, 2014), aggressive ground water extraction (Madani, Aghakouchak, & Mirchi, 2016; Shah, 2009), and irrigation expansion (Hassanzadeh et al., 2017; Zekri, Madani, Bazargan-Lari, Kotagama, & Kalbus, 2017) have shown that quick fixes to water security problems can backfire and result in creating whole new set of problems that are often more complicated than the original problem (Aghakouchak, Feldman, Hoerling, Huxman, & Lund, 2015; Mirchi, Watkins, Huxman, Madani, & Hjorth, 2014). Thus, the water resources community has come to a consensus that complex water resource problems require comprehensive solutions that are based on new thinking (Hjorth & Madani, 2014) and improved skills of problem definition, integration, data use, and tool development (Rosenberg & Madani, 2014).

In addition, the appreciation of the overlooked role of human behaviour in water management (see Madani, 2010) in conjunction with the growing understanding of the hydrology community about the significance of human activities within hydrologic cycle (see the emerging discussions around “socio-hydrology” e.g., Di Baldassarre, Viglione et al., 2013; Di Baldassarre et al., 2015; Sivapalan, Savenije, & Blöschl, 2012; Sivapalan et al., 2014) have resulted into acknowledging profound inter- actions between natural and human water systems that can be described under a broader term of “coupled human-water systems” (Di Baldassarre, Kooy, Kemermink, & Brandimarte, 2013; Di Baldassarre, Brandimarte, & Beven, 2016; Snirivasan, Lambin, Gorelick, Thompson, & Rozelle, 2012). The evolving and self-organizing nature of interaction within these systems (Madani, 2013) in addition to the new non-stationarity conditions posed by climate and other sources of global change (Milly et al., 2008, 2015) imply that solutions to stationary problems may not be suitable under new circumstances. These new concepts have broaden the recognition of enormous challenges in addressing water security threats, particularly under extremely complex and uncertain futures. Recent definitions of water security summarize these new concepts and emphasize on existence of multiple dimensions within the water security discourse and the cross-scale dynamics within and between the coupled human-water systems (see Wheeler & Gober, 2013, 2015).

3. Challenges and needs in urban environments

Within the context laid above, achieving water security in urban environments has a particular importance as cities already include more than half of the world’s population and accordingly the highest concentration of socio-economic activities (Seto, Sánchez-Rodríguez, & Fragkias, 2010; Seto, Güneralp, & Hutyra, 2012). Nevertheless, complex, and in some cases unknown, dynamics within the coupled human-water systems, combined with existing technological, socio-economic and management obstacles, introduce a new set of scientific challenges in urban regions. Facing these challenges requires pushing the boundary of current advancements within the water security domain. First new insights, tools and methodologies are needed for better representation of complex interactions within coupled human and natural systems in urban regions across a range of temporal and spatial scales. Such attempts should be made with the greater goal of diagnosing water-related threats in urban areas as a result of extreme or gradual changes in natural and anthropogenic conditions, in light of current limitations in future projections – see Jaramillo and Nazemi (2017). Refined decision-making tools are also required for capturing trade-offs in consequences of potential decisions, especially under uncertain future conditions of human-water systems (see Hassanazadeh, Elshorbagy, Wheeler, Gober, & Nazemi, 2015; Hassanazadeh, Elshorbagy, Wheeler, & Gober, 2016; Nazemi & Wheeler, 2014). While still the IWRM context of water security stays the same, particular attention should be made to (i) the notion of risk in design, planning and management of urban water systems; and (ii) the social dimension of urban water security, particularly with respect to the attitudes and values that determine the uptake of new technologies and regulative practices by the public and utilities. Addressing these challenges will be likely achieved again by narrowing the problem within the broader framework of IWRM; however they should aim at opening up a dialogue with management and policy communities. We would like to emphasize that making a collaborative, two-way interaction between science and policy spheres is the key to achieving practicable urban water security solutions.

Scientific contributions, addressing the above mentioned challenges, are emerging (see e.g., Nazemi & Madani, 2017); however much more needs to be done: First, new technologies are required to implement the science solutions particularly with respect to water conservation, treatment, and reuse. While there are practicable water conservation technologies around, much more is needed in the water
quality domain, particularly with respect to operational regulation and exotic contaminants. We also note that the uptake of scientific and technological solutions in urban areas requires particular attention to the socio-economic drivers at the managerial and public levels. We would like to emphasize on the importance of social capital in achieving urban water security and the need for having effective multi-channel mechanisms for knowledge delivery to public and policy-making. We envision that due to the role of social processes in urban water security, social processes ultimately embedded in IWRM models as new algorithms. This can lead into new understanding of the complex dynamics between human and natural systems and can pave the way to extend the scope of risk management.

References

Al-Nazemi, K. & Madani
Guegan, M., Uvo, C. B., & Madani, K. (2012). Developing a module for estimating climate as new algorithms. This can lead into new understanding of the com-water security, social processes ultimately embedded in IWRM models making. We envision that due to the role of social processes in urban water security and the need for having e-effective multi—decision making under uncertainty. Advances in Water Resources, 34(5), 607–616.

Planning and Management, 142(2) 05015066.