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Climate warming is expected to alter hydropower generation in California through affecting the annual
stream-flow regimes and reducing snowpack. On the other hand, increased temperatures are expected
to increase hydropower demand for cooling in warm periods while decreasing demand for heating in
winter, subsequently altering the annual hydropower pricing patterns. The resulting variations in

Keywords: hydropower supply and pricing regimes necessitate changes in reservoir operations to minimize the
Climate change revenue losses from climate warming. Previous studies in California have only explored the effects of
Hydropower hydrological changes on hydropower generation and revenues. This study builds a long-term hydro-

Artificial Neural Network power pricing estimation tool, based on artificial neural network (ANN), to develop pricing scenarios

under different climate warming scenarios. Results suggest higher average hydropower prices under
climate warming scenarios than under historical climate. The developed tool is integrated with
California’s Energy-Based Hydropower Optimization Model (EBHOM) to facilitate simultaneous con-
sideration of climate warming on hydropower supply, demand and pricing. EBHOM estimates an
additional 5% drop in annual revenues under a dry warming scenario when climate change impacts on
pricing are considered, with respect to when such effects are ignored, underlining the importance of

considering changes in hydropower demand and pricing in future studies and policy making.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

California’s statewide average temperatures are expected to rise
between 1.5 °C and 5 °C by 2100 (Luers et al., 2006; Cayan et al.,
2008, 2009). This temperature increase is expected to decrease the
state’s snowpack reserve at high elevations, decrease the snowmelt
peak flow, and shift the snowmelt to earlier in the year (Luers et al.,
2006; Moser et al., 2009). This is a major concern for future energy
generation from high-elevation hydropower plants in California. The
high-elevation hydropower reservoirs in California, regulated by the
Federal Energy Regulatory Commission (FERC), with high energy
heads and relatively small storage capacities have been designed to
take advantage of snowpack, which functions as a natural reservoir.
Thus, their low storage capacity might make them vulnerable to
future snowpack volume and runoff timing variations (Madani and
Lund, 2010).

Besides affecting water availability for hydropower generation,
higher temperatures will likely increase energy demand for cooling
in warm periods and decrease the need for heating in cold periods
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(Luers et al., 2006; Franco and Sanstad, 2006; Aroonruengsawat and
Auffhammer, 2009). Under climate warming, higher costs from
increased demand for cooling are expected to outweigh the
decreases in heating costs (Franco and Sanstad, 2006). Among
plausible climate scenarios, some estimate a higher temperature
increase in summer than in winter (Luers et al., 2006), which might
be problematic with respect to hydropower generation since the
annual peak load already occurs in summer for cooling.

This study develops an Artificial Neural Network (ANN) to map a
non-linear relationship between temperature, price, and electricity
demand. ANNs are networks of interconnected neurons that were
developed in an attempt to reproduce the powerful human brain’s
architecture (Hsieh and Tang, 1998). Once calibrated, this ANN
model is used as a long-term price estimation tool, allowing the
estimation of climate warming effects on electricity prices. Previous
studies of climate change effects on hydropower in California
(e.g., Medellin-Azuara et al, 2008; Madani et al., 2008; Vicuia
et al., 2008; Madani and Lund, 2010; Connell-Buck et al., in press)
have tried to address this issue by focusing on climate warming
effects on the supply side only (exploring the effects of hydrological
changes on generation and revenues), ignoring the warming effects
on hydropower demand and pricing. The developed module in this
study facilitates future policy making with regard to hydroelectricity
in California. Allowing for simultaneous consideration of changes in
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energy supply and pricing, this module can be used for assessment
of the adaptability of California’s high-elevation hydropower system
to climate warming which is essential to statewide long-term
adaptation planning and of particular importance to the FERC's
hydropower licensing process (Madani, 2011).

Given the importance of considering the climate change effects
on hydroelectricity demand in future energy planning and policy
making, the ANN model is developed as a complementary module
to the existing California’s Energy-Based Hydropower Optimiza-
tion Model (EBHOM) (Madani and Lund, 2009) to improve its
energy price representation under climate warming scenarios.
EBHOM is a monthly step model. Its price representation uses
revenue curves that are the integrations over the hourly price
frequency distribution curves. This allows capturing the hourly
variability in energy prices — on a monthly basis - of the energy
market. The price representation is a function of the percent time
turbines are in operation, assuming they operate in hours when
the energy market offers higher prices.

California’s electricity supply industry turned into a competi-
tive deregulated market in the 1990s (CBO, 2001). The California
Power Exchange (California PX) operates the day-ahead market
and sets the price to which generators will sell electricity based
on a bidding process. California Independent System Operator
(California ISO) then operates the region’s power grid and whole-
sale electricity market. The deregulation of the energy market
created competition among electricity producers and retailers
who need price forecasts to develop their bidding strategy in the
electricity market (Lu et al., 2005; Amjady and Hemmati, 2006).
Operations decisions are now highly dependent on market elec-
tricity price (Amjady and Keynia, 2010a). Electricity generation
scheduling is based on profit maximization whereas it was based
on cost minimization in the earlier regulated environment to
meet the electricity demand (Zarezadeh et al., 2008).

Dealing with short-term price forecasting, Artificial Neural
Networks (ANNs) have shown a good ability to forecast normal
electricity prices (Zhao et al., 2007). One of the main advantage of
ANNSs over traditional methods such as regression, time series or
regressive integrated moving average (ARIMA) is that they are
more adapted to long-term patterns as they can cope with non-
linear behavior of the target signal (Amjady and Hemmati, 2006).
ANNs provide an appealing solution for establishing non-linear
relationships between input and output variables in complex
systems (ASCE Task Committee on Artificial Neural Networks in
Hydrology, 2000; Dawson and Wilby, 2001) and are capable of
extracting information even with little prior physical knowledge
about the systems (Zhang et al., 1998). To the best of the authors’
knowledge, research on ANNs as price estimation tools has
exclusively focused on short-term price forecasting, following
the needs from the market. The estimation of the effects of
climate warming on energy prices through ANN has not been
investigated yet.

The paper first discusses how the ANN model is developed and
calibrated to map a relationship between temperature, energy
demand, and prices. The ANN model is then used to estimate
California’s long-term hydropower price patterns under different
climate warming scenarios. Results from the ANN tool are presented
and discussed. Finally, the ANN model’s results under one of the
climate warming scenarios, examined here, are fed to the EBHOM to
examine the sensitivity of hydropower operations under climate
change to hydropower pricing and electricity demand.

2. Method

Even though the original idea to develop ANN models was
proposed in the 1940s by McCulloch and Pitts (1943), progress

was relatively slow until the 1980s when Rumelhart et al. (1986)
discovered a mathematically rigorous theoretical framework by
proposing the backpropagation optimization algorithm. Since
then, ANNs have been successfully used for prediction and
forecasting applications in hydrological problems (ASCE Task
Committee on Artificial Neural Networks in Hydrology, 2000;
Kingston et al., 2005) and in short-term electricity price forecast-
ing (e.g., Lu et al., 2005; Amjady and Hemmati, 2006; Ranjbar
et al., 2006; Amjady and Keynia, 2010a).

The ANN built in this work is designed as a module of EBHOM
hydropower model. EBHOM is a monthly-based model that
maximizes hydropower generation revenues using monthly rev-
enue curves that are the integrations over the hourly price
frequency distribution curves as explained in Madani and Lund
(2009). To meet the needs from EBHOM, the ANN model was
calibrated using hourly data. Hourly output prices from the ANN
are used to build revenue curves used by EBHOM.

The method used in this work to design the ANN is inspired by
the protocol for implementing Rainfall-Runoff ANN models,
defined by Dawson and Wilby (2001), and additional modeling
suggestions from Maier and Dandy (2000). They defined a
theoretical framework for ANN model design. A feed-forward
ANN is chosen since it has commonly been used for prediction
and forecasting applications in hydrological problems (ASCE Task
Committee on Artificial Neural Networks in Hydrology, 2000;
Kingston et al., 2005) and in short-term electricity price forecast-
ing (Ranjbar et al., 2006; Zarezadeh et al., 2008).

A typical ANN consists of a number of neurons (also called
nodes) that are organized in a specific arrangement (ASCE, 2000).
In a feedforward network, information flows unidirectionally
from an input layer towards an output layer. Between the input
and output layers there can be one or several hidden layers
processing information before it reaches the output layer.
A schematic diagram of a jth neuron is displayed in Fig. 1.
This neuron transforms an input vector X = (xy,...,X;,...,Xp) into
a single output y;. Neuron Y’ is characterized by a vector of
weights represented by a vector W; = (Wyj,...,Wj;,...,Wy;), a bias b;
and an activation function f. The inputs to the neuron can be
causal variables, i.e., the inputs to the system if the neuron is in
the input layer, or they can be outputs from neurons belonging to
previous hidden layers. The activation function determines the
response of the neuron as follows: W; =f(X x W;+b;).

The ANN model has to be trained to obtain a model represent-
ing reality as accurately as possible. Training or calibrating an
ANN model is the process of adjusting its parameters (weights) to
minimize a predefined error function (Kingston et al., 2005) - the
determination coefficient R?, in this work. The global-search
algorithm “Shuffle Complex Evolution” (SCE-UA) (Duan et al.,
1992) is applied to train the ANN. The SCE-UA method has good
convergence properties over a broad range of problems and it
should have a high probability of finding the global optimum

Fig. 1. Schematic representation of a neuron “j” in a feed-forward ANN.
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(Duan et al., 1992). The general idea of SCE-UA algorithm is to
generate a population of random points from the feasible space of
parameters that will evolve towards an optimal solution, i.e., the
global minimum of the error surface. The SCE-UA method uses an
evolution process called the Complex Evolution Algorithm
(Duan et al., 1992) to ensure that the population of points does
not get trapped into unpromising regions. The reader is referred
to Duan et al. (1992, 1994) for further information on SCE-UA
algorithm.

During the training phase, the ANN architecture can be
adjusted to minimize the error function. The optimal ANN
architecture is determined through a trial-and-error procedure
as commonly seen in the literature (ASCE Task Committee on
Artificial Neural Networks in Hydrology, 2000; Maier and Dandy,
2000). The procedure consists of trying out different numbers of
hidden layers and hidden nodes. Increasing the size of the ANN
increases the number of free parameters (weights). An ANN
should contain enough parameters to improve its capacity to
map a complex relationship between the inputs and outputs
(Dawson and Wilby, 2001). However, increasing the size of the
network over a certain threshold may produce the opposite effect
if the ANN overfits the data, hindering its ability to generalize
(Dawson and Wilby, 2001). Overfitting is characterized by a good
performance during the training period but very poor results
when a new unknown data sample is fed to the ANN for
validation. The cause of this behavior is that the ANN fitted the
training data so well that it fitted to the noise contained in the
sample (Hsieh and Tang, 1998).

Cross-validation procedure also referred to as cross-training
procedure is used in this work to decide when to stop the ANN
training. This procedure is usually recommended to prevent
overfitting (ASCE Task Committee on Artificial Neural Networks
in Hydrology, 2000; Maier and Dandy, 2000). It consists of
dividing the data sample into three sets — usually called training,
validation, and test sets — and using them independently to check
when the ANN is optimized. The ANN is considered to be
optimized when the training set minimizes the error function
and the error increases over the validation set (ASCE Task
Committee on Artificial Neural Networks in Hydrology,
2000).The performance of ANNs is reliant on the quantity and
quality of the calibration data (Kingston et al., 2005). Before
calibration of the model, a preliminary statistical data analysis
is performed to get an overview of existing trends, potential
problems and to allow an adequate data preprocessing. Once the
ANN model is trained, it can be used as a long-term price
estimation tool to estimate the effects of climate warming on
demand and pricing.

Five climate warming scenarios are selected here, representing
a range of temperature increases and hydrological conditions (dry
and wet). All climate scenarios are based on two commonly used
Global Climate Model (GCM) scenarios: GFDL CM2.1 (from the
NOAA Geophysical Fluids Dynamics Laboratory) and Parallel
Climate Model (PCM). These GCM scenarios were combined to
the low forcing B1 and high forcing A2 greenhouse gas emission
scenarios. These are two of the probable sets of projection of
greenhouse gas emissions for California (Cayan et al., 2008, 2009).
Among plausible climate scenarios, some estimate a higher
temperature increase in summer than in winter (Luers et al.,
2006, Cayan et al., 2008, 2009) which would have widespread
effects on water use and availability as well as on energy demand.
In fact, electricity demand for cooling is projected to increase in
warmer summers (Franco and Sanstad, 2006; Aroonruengsawat
and Auffhammer, 2009). These combined effects of climate
change on hydropower demand and supply (due to effects on
water use and availability) can potentially affect California’s high-
elevation hydropower system with low storage capacity and

Table 1
Climate change scenarios for California (adapted from Cayan et al. (2008, 2009)).

Scenario GCM  SRES  2070-2099 Temperature change (°C)*®
Name

Winter Summer Spring (MAM) &

(DJF) (JJA) Autumn (SON)
GFDL-A2-Annual GFDL A2 +4.5 +4.5 +4.5
GFDL-A2-Seasonal GFDL A2 +34 +5.9 +4.5
PCM-A2-Annual PCM A2 +2.6 +2.6 +2.6
GFDL-B1-Annual  GFDL BI1 +2.7 +2.7 +2.7
PCM-B1-Annual PCM Bl +1.6 +1.6 +1.6

2 Values from two regions referred to as Nocal and Socal (North and South
California) were averaged to produce an average considered to be representative
for entire California.

Y Temperature change in spring and autumn was assumed to be equal to the
average annual temperature change.

operation flexibility. In this work, four scenarios assume a con-
stant increase in temperature throughout the year (e.g., scenario
referred to as GFDL-A2-Annual) whereas an additional scenario
(GFDL-A2-Seasonal) assumes that temperature increases more in
summer than in winter. The temperature increases for all these
scenarios, shown in Table 1, were adapted from the estimations
by Cayan et al. (2008, 2009).

A strong assumption is made here, reasonable for facilitating a
large-scale study: the statewide temperature increase considered
here is the average of the temperature increases for the two
regions NOCAL and SOCAL (NOCAL corresponds to Sacramento
region whereas SOCAL to the area around Riverside in Southern
California). This average value is considered to be representative
of the highly electricity demanding areas, i.e., the highly popu-
lated areas in California which are of interest in this work. The
same temperature increase estimated by Cayan et al. (2008)
based on mean values for the historical period 1961-1990 was
used in this work; however, the base period to which it is added is
the 2005-2008 average.

3. Input data

Data for the 2005-2008 period were collected to train the ANN
model as described below.

3.1. Temperature

Hourly temperature data for the period 2005-2008 were
extracted from the website of University of California Statewide
Integrated Pest Management Program (University of California,
2010) and were standardized. Standardizing a time series is the
process of rescaling the series to get a set with a mean of zero and
a standard deviation of one. First, the mean of the set is
subtracted from each component of the time series and then
the resulting set is divided by the standard deviation. This step is
important when pre-processing the ANN model inputs to ensure
all inputs receive equal attention during the ANN model training
(Maier and Dandy, 2000). Data for three Pest stations were chosen
and their average was considered to be representative for areas
with high electricity demand in California. The three stations are
located in the counties of Fresno, Colusa and San Joaquin. The
average temperature of the three mentioned stations may not
reliably represent the average temperature in California with
high climate variability. Nevertheless, we were not able to find
additional stations, providing hourly temperature data for the
2005-2008 period for which hourly price data was available. This
is a limitation of this study that may be addresses in future
studies.
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3.2. Energy demand

Franco and Sanstad (2006) found that daily demand of elec-
tricity for the area serviced by the California ISO in 2004 is
correlated to average daily temperature measured in four loca-
tions of California. They estimated daily electricity demand in
MWh as a third-degree polynomial function of temperature, given
in Eq. (1). They calculated a correlation coefficient of R*=0.9098.

D =3.3833T3-263.75T*—~831.05T + 905,961 1)

where D is the demand and T the temperature in F.

In this research work, hourly electricity demand was esti-
mated as a function of hourly average temperatures through this
function. We assumed that this was reasonable since we are
interested in building a demand ‘signal’ that is representative of
the general impact of temperature on electricity demand. There-
fore, we are not trying to capture peak hourly demands through
this function. Hourly electricity demand is not reliant on tem-
perature only but on many other parameters such as the day of
the week, the hour of the day, etc. In the next steps of the
modeling, temperature, demand and other parameters are used as
inputs to the ANN. The ANN is expected to map the non-explicit
relationship between price and all these parameters based on its
ability to extract information even with little prior physical
knowledge about the systems (Zhang et al., 1998). The electricity
demand input to our ANN model should therefore be seen as a
demand signal, used to improve the performance of the ANN
model, rather than an actual demand set. Among the many
experiments made when designing the ANN model, a model
without a demand input (signal) was tested. Results indicated
that the model performed better when the demand signal was
added to the set of inputs.

Finally, an input (signal) referred to as ‘Base Temperature’
(Base Temp = |T—Tpn|) was created where T, is the tempera-
ture corresponding to the minimum electricity demand in Eq. (1).
This variable is an additional index reflecting the increase in
electricity demand relative to the minimum energy demand. This
was inspired from the definition of the base temperature in
degree-day approaches. The demand signal and the base tem-
perature were standardized before being fed to the ANN model.

3.3. Hydroelectricity prices

Real-time hourly energy prices for 2005-2008 were obtained
from the California ISO Open Access Same-time Information
System (OASIS) website (California ISO, 2010). California ISO
serves more than 30 million consumers with electricity so these
hourly prices are considered to be representative of California’s
energy market. Prices for September--December 2005 were
discarded from the price dataset since those are abnormally high
after perturbation of the entire US energy market by Hurricane
Katrina (California ISO, 2006). Prices for January-June 2008 were
also high on average due to soaring fossil fuel prices combined
with dry conditions in spring (California ISO, 2009). Those prices
were not discarded but an additional input to the ANN, equal to
1 for January-June 2008 (and O otherwise), was created to
account for these specific events. Price data were standardized
and then scaled between —0.9 and 0.9 to avoid squashing with a
hyperbolic tangent activation function in the ANN hidden layer.

Based on the definition by Lu et al. (2005) (P, = i + 25, where
4 is the mean value and ¢ is the standard deviation of the price
dataset), price spikes (or price outliers) in California ISO were
identified as prices exceeding P,=128 $/MWh. They include 3.7%
of the price population (or 1191 data samples) and represent
12.9% of the cumulated price intensities. Many high intensity
prices are observed in 2008 but are probably not price spikes

since a global increase in energy prices occurred that year. Their
intensity is still ‘abnormally’ high so no distinction between those
and other price spikes was made. Prices below the threshold P,
are referred to as normal prices hereafter.

4. ANN model setup and calibration

A multilayer feed-forward ANN model is developed and
optimized using the global-search SCE-UA algorithm. The ANN
architecture and inputs are shown in Fig. 2. In the following
sections, the choice of ANN user-defined parameters is described,
different data partitioning experiments are presented, and finally
two ANN models are retained.

4.1. Sensitivity analysis, choice of ANN parameters

A single hidden layer is chosen as it should be sufficient to
model any non-linear relationship, given that sufficient degrees of
freedom (hidden neurons) are provided (Hornik et al., 1989).
Eight hidden neurons and eight complexes for SCE-UA optimiza-
tion algorithm were selected after sensitivity analysis as a
compromise between architecture complexity and calibration
processing speed. The range investigated during sensitivity ana-
lysis is shown in Table 2. The other algorithmic parameters in
SCE-UA were initialized to the values recommended Duan et al.
(1994).

Tangent hyperbolic (tansig) activation function was selected in
the ANN hidden layer and combined to a linear function in
the output layer as is common in short-term price electricity
forecasting works (Ranjbar et al., 2006; Zarezadeh et al., 2008;

Input layer Hidden layer
A

Output layer
A

Temperature

Temperature h-1

O

Temperature h-2

Temperature h-3 —=>@

7
O

'y

Demand %C) \ R

Season %(: ) @‘\\\\Q\ Price
o IR

Month D O

Additional Input

Fig. 2. Architecture of the feed-forward ANN designed and selected inputs.

Table 2
User-defined parameters of the ANN architecture and the SCE-UA optimization
algorithm.

Parameter Value adopted Range investigated

ANN Architecture

Number of hidden layers 1 1°
Number of hidden neurons 8 1-8
Activation function in the Tangent Tangent hyperbolic &

hidden layer hyperbolic Logistic sigmoid
SCE-UA Algorithm
Number of complexes 8 1-8

2 A single hidden layer is supposed to be enough to map any non-linear
relationship between a set of inputs and outputs (Hornik et al., 1989).



M. Guégan et al. / Energy Policy 42 (2012) 261-271 265

Gao et al., 2000). Sigmoid-type functions return a non-linear
output response that makes them a useful tool to map non-linear
processes (ASCE Task Committee on Artificial Neural Networks in
Hydrology, 2000). Logistic sigmoid function was also considered
as an alternative choice, but sensitivity analysis shows that
output prices from a model using tansig activation function fit
best to observed prices in terms of average and maxima (Table 2).

4.2. Data partitioning experiments

Generally, in a competitive energy market, hourly electricity
price series contain multiple seasonalities such as weekly and
daily periodicities. Therefore, it is very hard for a single ANN to
map correctly the input/output relationship of such a signal in all
time periods (Amjady and Keynia, 2010b). In previous research,
datasets have sometimes been partitioned along: periods of warm
and cool days (Ranjbar et al., 2006), workdays and weekends (Gao
et al., 2000), public holidays (Amjady and Keynia, 2010b), or
stochastic components (Zhao et al., 2007). As part of the ANN
calibration procedure, different data partitions were also tested in
this work. They were compared to an ANN built on all data, i.e.,
without subdividing the dataset.

Experiments included dataset partition along seasons, months,
days, and hours. Two model types were found to produce good
visual agreement with observed data: (1) twelve parallel
monthly-based models; and (2) two parallel models for workdays
only and weekends only. The range of R values obtained for those
two trained ANN models are shown in Table 3, as well as for an
ANN trained on all data. It can be seen from Table 3 that

Table 3
Range of determination coefficient for simulations on four trained ANN models
based on different data partitions.

Data partitions Data partitions RZmulation

All data - No data partition 1 0.28

Monthly-based 12 0.16-0.47

Workdays-/Weekend-based 2 0.28-0.33

Normal prices, Annually based 1 0.38
Table 4

partitioning the dataset results in higher R? values compared to
when the entire dataset is fed to the ANN model. The highest R?
value is obtained for one of the twelve monthly models.

Only one of these three models was retained for further
analysis. The ANN model based on the entire dataset was
discarded from further analysis since subdividing the dataset
showed better correlations and should facilitate the ANN learning
process. Monthly based models (hereafter referred to as ANN1)
were selected since they were considered to be appropriate to
capture the monthly price variability, which is of interest in this
work. As mentioned earlier, monthly revenue curves (integration
over the monthly price frequency distribution) are the results
from the ANN models to be used as inputs to the hydropower
optimization model (EBHOM). Monthly based models were
trained using 9 predictors (numbered 1-5 and 8-11 in Fig. 2).
The distributions of observed prices and modeled prices using
ANNT1 are given in Table 4 (Base case refers to the historical
climate with no warming). Under Base case, ANN1 returns
essentially prices in the range 25-85 $/MWh (representing 80%
of data); lower and higher prices are poorly modeled and prices
exceeding 360 $/MWh are not returned. This reflects the fact that
ANN models learn better on the (frequent) average data than on
the extreme (rare) intensities (Olsson et al., 2004).

Since outliers are not captured by the ANN1, a model trained
on normal prices only was developed (using all 11 inputs shown
in Fig. 2). Prices defined as price spikes (see section 0) were
removed from the calibration dataset. In this case, no time-based
data partition was considered and the model was trained on data
from all year round. The annually-based ANN trained on normal
prices improved the determination coefficient by 0.1, compared
to an ANN model trained on all price intensities (Table 3). Lu et al.
(2005) and Zhao et al. (2007) already highlighted that ANNs are
unable to model price spikes because those are highly erratic,
several orders of magnitude higher than the average price and
under-represented compared to normal prices. Furthermore, price
spikes are most likely not driven by the inputs selected in the
present work. According to Lu et al. (2005), almost all the existing
techniques for short-term price forecasting require filtering out
price spike signals in order to forecast normal prices with rather
high accuracy. Depending on how the energy market is projected
to evolve, two options to deal with the truncated price spikes are

Price distribution results from the ANN long-term price estimation tool under Base case and different climate scenarios.

Climate scenario ANN model® Prices in $/MWh Price Percentiles in $/MWh

Average Standard Minimum Maximum 10th 25th 50th 75th 90th
Deviation

Observed data 54.87 36.54 0.00 400.0 23.88 36.88 49.13 64.14 84.28
Base Case ANNT1 54.65 22.22 0.00 358.2 31.70 40.62 50.55 64.00 81.09
ANN2 54.85 32.32 12.96 400.0 32.22 40.44 49.07 58.60 73.93
GFDL-A2-Annual ANN1 59.89 33.16 0.00 425.7 30.78 41.04 51.73 70.20 96.15
ANN2 55.96 33.04 9.00 400.0 31.13 40.58 49.31 61.95 76.11
GFDL-A2- ANN1 61.55 35.28 0.00 425.7 31.20 41.69 52.38 71.93 99.75
Seasonal ANN2 56.67 33.07 9.00 400.0 31.64 41.15 49.87 63.24 76.98
PCM-A2-Annual ANN1 56.94 27.51 0.00 392.8 31.11 40.64 50.91 66.91 88.49
ANN2 55.25 32.74 9.76 400.0 31.31 40.20 49.02 60.11 74.98
GFDL-B1-Annual ANN1 57.15 27.95 0.00 388.5 31.11 40.67 50.93 67.11 89.09
ANN2 55.30 32.76 9.62 400.0 31.27 40.20 49.04 60.24 75.04
PCM-B1-Annual ANN1 55.82 25.09 0.00 384.3 31.42 40.55 50.64 65.44 85.00
ANN2 55.03 32.57 10.73 400.0 31.67 40.24 48.98 58.32 74.42

2 ANN1: Monthly-based model trained on all price ranges; ANN2: Annually based model trained on normal prices to which the same percentage of price spikes
occurred in 2005-2008 was added. Base case refers to historical climate with no warming.
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Fig. 3. Comparison of the revenue curves for ANN1 and ANN2 for January (a) and
July (b) (ANN1: Monthly-based model, ANN2: Model trained on normal prices
(not trained on price spikes), Base - Historic: historical prices 2005-2008).

foreseeable: assuming that price spikes will disappear from the
energy market, or not. According to Lu et al. (2005), price spikes
should only occur when demand exceeds supply in an ideal
competitive electricity market. However, most markets are not
ideally competitive, and gaming behaviors probably influence the
market (Lu et al., 2005). It has also been argued that suppliers
might take advantage of the vulnerability (difficulty of storing,
generation capacity constraints, and transmission congestion) of
the electricity market by withholding their capacity so as to shift
supply-demand curves, forcing price spikes (Zhao et al., 2007).
It is assumed in this work that market operation is foreseen to
stay as today, so price spikes will most likely continue to occur.
The same percentage of price spikes, as observed in 2005-2008
period in the California ISO market, is assumed to occur in the
future energy market and unimpaired price spikes are added to
the modeled price set.

Price distributions and visual agreement between observed
and modeled prices were found to match best for two ANN
models: twelve monthly based parallel models trained on all
price ranges (ANN1) and an annually based model trained on
normal prices (ANN2). Price distributions obtained from the
trained ANN1 and ANN2 for the Base case are given in Table 4.
Fig. 3 shows results from calibration in terms of monthly revenue
curves (integration over the price frequency distribution) for the
months of January (winter season) and July (summer) for the

ANN1 and ANN2 models. Both calibrated models return prices
with very similar distributions to the observed values.

5. ANN results under climate warming forcings

Table 4 indicates the results from the simulations for different
climate warming scenarios. Estimated average prices under
all climate warming scenarios exceed Base case’s average price
(55 $/MWh). ANNT1 predicts higher 50th, 75th and, 90th price
percentile increases than ANN2 for all scenarios (i.e., ANN1 esti-
mates higher price increases than ANN2).

Fig. 4 shows the monthly revenue curves (developed based on
the method suggested by Madani and Lund (2009)) for January
and July obtained from ANN1 model run under different climate
warming scenarios. Corresponding results for ANN2 are not
presented here because patterns are similar to those obtained
from ANNT1, except that the magnitude of changes relative to Base
case is less. For both ANN models, all climate warming scenarios
lead to increases in revenue in summer months and revenue
drops in winter. This behavior corresponds to what was expected,
increased need for cooling in warm months and decreased need
for heating in cold months. In spring and autumn, patterns vary
between months and ANN models. This is especially noticeable in
April and October, which are transitioning months between warm
and cold periods of the year. When comparing results from
different climate scenarios, high forcing scenarios lead to larger
changes in revenue curves than low forcing scenarios.
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Fig. 5. Estimated ANN prices and historical prices (2005-2008) for GFDL-A2-Annual climate warming scenario for ANN1 (a) and ANN2 (b). (ANN1: Monthly-based ANN;

ANN2: ANN model trained for normal prices and unimpaired price spikes).

Fig. 5 shows the modeled price intensities plotted against
temperature for both ANN models under the high forcing scenario
GFDL-A2-Annual. Relative to historical prices, prices increase as
temperature raises. This was also highlighted in Fig. 4.

Generally, ANN1 predicts higher price increases than ANN2.
One of the possible reasons is that each monthly-based model in
ANN1 has only been trained on the range of temperature
occurring in that specific month. Therefore, it is blind to the
price-temperature relationship mapped in other months. When
temperatures are perturbed to simulate climate warming scenar-
ios, the resulting highest temperatures in each month will always
be out of bounds of the training temperature dataset. The inability
of ANNs to extrapolate (Maier and Dandy, 2000) might lead to a
misrepresentation of prices by ANN1. Another possible reason for
the higher price increase predicted by ANNT1 is that price spikes
have not been removed from the monthly datasets. During
training, ANN1 adjusted its parameters trying to represent those
high prices. Some price spikes derive from natural circumstances
(e.g., warm period, peak hour) and ANN1 might be able to map
them. However, price spikes also derive from extraordinary
circumstances in the energy market (discussed in Section 4.2)
and might bias the price representation by ANNT1. Finally, ANN2
might also underestimate prices. Being trained only on normal
prices, ANN2 will most likely not return output prices higher than
the price spike threshold. This discussion led us to decide that
ANN?2 is better suited to be a long-term price estimation tool for
climate warming simulations.

6. Integration with EBHOM

EBHOM is a non-linear hydropower revenue optimization
model which finds optimal hydropower operations for 137
high-elevation hydropower plants throughout California during
the 1985-1998 period. More details about EBHOM are provided in
Madani and Lund (2009, 2010).

The original purpose for the development of an ANN price
estimation tool in the present research was to integrate it with
the California’s Energy-Based Hydropower Model (EBHOM) as a
complementary module. EBHOM'’s present price representation uses
historical pricing (2005-2008) and ignores the effects of climate
warming on energy demand and pricing. However, considering the
effects of climate change on hydroelectricity demand is essential to
energy planning and policy making. This developed price estimation
module in this study is to be used when EBHOM is applied as a
planning tool to assess the adaptability of California’s high-elevation
hydropower system to climate warming.

To investigate the sensitivity of hydropower operations and
revenues to the possible climate warming effects on hydropower
demand and pricing, we ran EBHOM for a dry warming scenario
(GFDL-A2-Annual). This scenario is expected to be one of the
plausible worst case scenarios with regard to the adaptability of
California’s high-elevation hydropower system. ANN2 was used
to estimate future price representation considering warming
effects on demand (scenario referred to as Dry ANN2 hereafter).
Results examine energy generation, storage and revenue patterns,
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as well as benefits from expanding energy generation and storage
capacities. Results are compared to those obtained by Madani and
Lund (2010) under Base case (historical) climate and the same dry
scenario (referred to as Dry scenario hereafter), when historical
pricing is considered, ignoring the effects of climate warming on
demand and pricing. Table 5 indicates how California’s high-
elevation hydropower generation, spill, and annual revenue
change with Dry and Dry ANN2 scenarios in comparison with
the Base case scenario. Energy generation, energy spills, and
revenues decrease under dry scenarios relative to the Base case
as a result of reduction in total annual runoff. Generally, the drop
in revenue is less than the drop in generation under dry climate
warming, as the operators tend to minimize the revenue losses by
generating when hydropower prices are higher (Madani and
Lund, 2010). Under dry climate warming, generation decreases
by 20%. Such a reduction results in 19% decrease in revenues
under the Dry ANN2 and 14% decrease in revenues under the Dry
scenario. Therefore, it is reasonable to suggest that California’s
high-elevation hydropower system may be more vulnerable to
climatic changes than what expected under previous studies
(Vicuia et al., 2008; Madani and Lund, 2010).

Fig. 6 shows how the average monthly energy generation
during the 1985-1998 period changes with dry climate warming.
Results are summed from all 137 units modeled. Under the Base
case, generation peaks between April and August. On average, Dry
scenario leads to less generation than under the Base case except
in January and February. In July, the peak storage under the Base
case exceeds Dry scenario’s peak by more than 600 GWh on
average. When climate warming effects on hydropower demand
and pricing are considered (Dry ANN2), generation peaks in July
and outweighs the peak under Dry scenario by nearly 1000 GWh
(the peak reaches 2500 GWh). In contrast in winter, average
generation decreases when changes in demand are considered.

Table 5

EBHOM'’s results (average of results over 1985-1998 period) for dry climate
warming scenarios under historical pricing and estimated prices using ANN2
model (ANN2: ANN model calibrated on normal prices).

Base Dry Dry ANN2
Generation (1,000 GWh/year) 223 179 17.9
Generation change with respect to the base case (%) —-19.8 -19.8
Spill (GWh/year) 130 96 96
Spill change with respect to the base case (%) -26 -26
Revenue (million $/year) 1,726 1,482 1,400
Revenue change with respect to the base case (%) —141 -189
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Fig. 6. Average Monthly Generation (1985-1998) for Base case scenario and dry

warming scenarios (under historical pricing and estimated prices using ANN2
model (ANN2: ANN model calibrated on normal prices)).

These results clearly indicate how the increasing demand for
cooling in summer and decreasing demand for heating in winter
can affect the operations.

Fig. 7 shows how average end-of-month energy storage in all
reservoirs combined changes with different climate scenarios
when reservoirs are operated for energy revenues only. Reservoirs
start refilling one month earlier under both drier scenarios
(December) compared to the Base case (January). Under dry
scenarios, the system must take maximal advantage of the water
available from the shifted snowmelt, to be released when prices
are on-peak, i.e., in summer. The timing of the patterns is similar
to the monthly runoff distributions. Between January and June,
the system stores more water in its reservoirs when future
changes in demand are considered (Dry ANN2) than when they
are ignored (Dry). Less energy is needed in cold months so more
water is available to be stored for high-electricity demanding
months. The peak storage occurs in May under both dry scenarios
whereas it is in June under Base case. When changes in demand
are considered, the peak storage exceeds Dry scenario’s peak by
more than 300 GWh. On average, the system’s total storage
capacity is never met. However, this does not imply that there
is no energy spill in the system as storage may reach the
maximum capacity in some reservoirs (Madani et al., 2008).
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Fig. 7. Average total end-of-month energy storage (1985-1998) for historical

climate and dry warming scenarios under historical pricing and estimated prices
using ANN2 (ANN2: ANN model calibrated on normal prices).
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Fig. 8. Frequency of monthly energy price (1985-1998) for historical climate and
dry warming scenarios under historical pricing and estimated prices using ANN2
model (all months, all years, all units) (ANN2: ANN model calibrated on normal
prices).
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Fig. 8 shows dry climate warming effects on monthly average
price received for generated energy in the period 1985-1998.
Prices received under both dry scenarios exceed the Base case
prices 85% of the time, with monthly generation being less than
the Base case 100% of time. This is what was expected given the
non-linear relationship between electricity prices and generation.
Average prices received here reach about 175 $/{MWh under drier
scenarios and 135 $/MWh under Base case. Energy prices received
under Dry ANN2 exceed those under Dry scenario in 20% of
months and are lower the 80% rest of the year. On average, annual
revenues under Base case exceed those under Dry scenario by
$240 million, and those under Dry ANN2 by $325 million
(Table 5). Less revenue is received under Dry ANN2 because
prices received were lower than under Dry conditions 80% of
time. Although monthly average prices received for generated
energy were higher under drier scenarios than Base case, those do
not compensate for the loss in energy generation.

Fig. 9 indicates, on average, how energy storage capacity
expansion changes hydropower generation revenues for different
dry climate scenarios over the 14 years study period. This figure
indicates the average shadow price of energy storage capacity
(the increase in annual revenue per 1 MWh energy storage
capacity expansion) for all 137 reservoirs. For instance, increase
in annual revenue per 1 MWh energy storage capacity expansion
is less than $29, $48, and $45 for the 137 studied plants under the
Base, Dry, and Dry ANN2 scenarios, respectively. Storage capacity
expansion reduces spills and allows the system to capture more
snowmelt water to be released when energy is the most valuable.
Average annual revenues can be increased by expanding storage
capacity in all plants (except for four plants under Base case and
seven under both dry scenarios), although such expansion might
not be justified due to expansion costs.

Fig. 10 indicates the average shadow price of energy genera-
tion (turbine) capacity (increase in annual revenue per 1 MWh of
annual energy generation capacity expansion) for all 137 plants
under different climate scenarios. All scenarios benefit from an
increase in generation capacity, reducing spills and allowing more
energy to be generated when prices are high. Increase in annual
revenue per 1 MWh energy storage capacity expansion is around
$22, $18, and $15 for the 137 studied plants under the Base, Dry,
and Dry ANN2 scenarios. Considering climate warming effects on
demand attenuates the benefits from expanding energy genera-
tion. Even though generation capacity expansion produces bene-
fits, expansion costs might be prohibitive.

Under both dry warming scenarios, expanding energy storage
capacity is typically more beneficial than expanding generation
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Fig. 9. Average Shadow Price of Energy Storage Capacity of 137 hydropower units
in California in the 1985-1998 period for historical climate and dry warming
scenarios under historical pricing (Dry) and estimated prices using ANN2 model
(Dry ANN2) (ANN2: ANN model calibrated on normal prices).

50
Base
40 - Dry
——— Dry ANN2
<
< 304
=
5
> 204
&
10- el
O T T

0 20 40 60 80 100 120
Number of Plants

Fig. 10. Average Shadow Price of Energy Generation Capacity of 137 hydropower
units in California in the 1985-1998 period for historical climate and dry warming
scenarios under historical pricing (Dry) and estimated prices using ANN2 model
(Dry ANN2) (ANN2: ANN model calibrated on normal prices).

capacity if the expansion costs are the same. Energy storage
capacity shadow price are on average 1.4 and 1.8 times higher
than the energy generation shadow price for all power plants
under Dry scenario and Dry ANN2 respectively. Expanding energy
storage capacity allows storing water in off-peak months and
releasing it through turbines when prices are higher. This ratio is
1.0 under Base case.

Under dry scenarios, the system benefits less from energy
generation expansion on average than under Base case since
water supply availability is the limiting factor. There is less
inflow, so the existing generation capacity is often sufficient to
avoid spills. On the contrary, for 69 plants (50%) and 75 plants
(55%) the benefit from expanding energy storage capacity under
Dry and Dry ANN2 scenarios respectively is greater than under
Base case. For a single plant, the difference between benefits
gained from 1 MWh of storage capacity expansion under Base and
drier scenarios can be as high as $28.

7. Conclusions

Two ANN models were developed to estimate the effects of
future climate warming on energy demand and pricing. The first
model is composed of 12 parallel ANN models, one for each
month, and is trained on all price intensities (ANN1). The second
model (ANN2) is an ANN model trained on a dataset from which
price spikes were excluded (prices exceeding 128 $/MWh). Price
spikes in the future energy market were assumed to occur in the
same frequency as presently, since California’s deregulated
energy market is not ideally competitive and is not foreseen to
become so. In an ideal energy market, price spikes should only
occur when demand exceeds supply, but gaming behaviors
(Lu et al., 2005) and market manipulations (Zhao et al., 2007)
are forcing price spikes. California ISO hourly price spikes were
identified as prices exceeding 128 $/MWh. The ANN price estima-
tion models assume current socio-economic conditions and
current operation of the electric grid. For instance, the interaction
between increased temperature and the trend towards greater
development in the state’s interior, requiring greater cooling
demand (Franco and Sanstad, 2006) is ignored. However, there
are so many uncertainties regarding the future energy market and
future socio-economic-technologic conditions that these were
assumed to remain as in present time.

The ANN long-term price estimation tool developed here
estimates higher price increases under high forcing scenarios
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and lower price increases under low forcing scenarios. Revenue
curves (integration over the price frequency distribution) show
that both ANN models estimate increases in revenue in warm
months and decreases in colder months. This corresponds to
increased need for cooling in warm months and decreased need
for heating in colder months.

Generally, ANN1 predicts higher price increases than ANNZ2.
One of the reasons is the time-scales difference of the models:
twelve models trained on each month’s temperature and price
datasets, and one single model trained on all year round data. The
monthly models are blind to the price-temperature relationship
mapped in other months. When perturbing the input temperature
dataset to the ANN model to simulate climate warming scenarios,
it might lead to a misrepresentation of prices by ANN1 because
ANNSs are unable to extrapolate. The highest temperatures in each
month will always be out of bounds of the training temperature
sample. The ANN1 model might also estimate higher price
increase than ANN2 because it was trained on a price dataset
including price spikes. Some price spikes derive from natural
circumstances (e.g., warm period, peak hour) and an ANN might
be able to map them. However, price spikes also derive from
extraordinary circumstances in the energy market and probably
bias the price representation by ANN1. For these reasons, ANN2
was considered to be more reliable than ANN1 in estimating
prices under climate warming simulations.

ANN2 was designed as a complementary module of EBHOM,
the California’s hydropower optimization model. To underline the
utility of the developed module and investigate the importance of
consideration of climate warming effects on hydropower demand
and pricing in addition to consideration of climate warming
effects on hydropower supply in planning and policy making,
EBHOM was run using ANN2 for a dry warming scenario. Results
suggest that California’s hydropower system might be more
vulnerable to climatic changes when changes in demand are
considered than expected under previous studies (Vicuiia et al.,
2008; Madani and Lund, 2010). Such an observation has an
important policy implication, suggesting that consideration of
climate change impacts on energy demand and pricing should be
integral to future energy planning and decision-making. In is
noteworthy that while this study was focused on California’s
hydropower system, other regions of the U.S. and the world, with
similar electricity market structures, can benefit from the devel-
oped method in their hydropower planning studies.

EBHOM estimated an increase in energy prices received under
dry conditions relative to baseline. This increase in prices would
however not compensate for the generation loss and annual
revenues are expected to decrease compared to baseline. Under
dry climate warming, generation decreases by 20%. Such a
reduction results in 19% decrease in revenues when changes in
demand are considered (under the Dry ANN2 scenario) and 14%
decrease in revenues when changes in demand are ignored (Dry
scenario). When changes in demand are considered under dry
climate warming, generation is foreseen to decrease in winter
with less generation required. This allows the system to store
more water during the snowmelt period to be released later on
when prices peak. In this case, an optimized operation of the
hydropower system suggests that the system is still able to
compensate (revenues decrease by 19%) for some of the loss in
generation (—20%) compared to baseline. Results showed that
expanding energy storage capacity should be beneficial for the
system to increase its revenues under dry conditions. With
generation decreasing in winter when changes in demand are
considered, expanding energy storage capacity allows storing
water in this period and is estimated to be even more beneficial
than under current energy demand. However, such expansions
might not be justified due to expansion costs.

This study required some simplifying assumptions to design
the ANN models. Nonetheless, it gives insights and suggests how
energy prices might be affected by a range of climate warming
scenarios. It also gives insights on some degree of adaptability
from California’s high-elevation hydropower system to dry cli-
mate warming. Refined ANN models could be developed, for
instance by including additional inputs driving energy price
spikes and also by defining another estimation of the demand-
temperature relationship. Price elasticity of demand was
neglected in this work, but could be included in further works,
even though uncertainties in the future energy market operation
and in future socioeconomic situation are expected to outweigh
its impact on energy pricing.
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